NOTE : Support of a function
Given a function $f:X\mapsto\mathbb{R}$ then support of $f$ is defined as
\[\boxed{\text{supp}(f)=\{x\in X|f(x)\neq 0\}}\]The joint entropy of two independent random variables $X$ and $Y$ is defined as follows
\[\boxed{H(X,Y)=H(X)+H(Y)}\]Take two random variables $X$ and $Y$. Here $\Omega$ is the domain of $Y$
Claim 1 : If $X$ and $Y$ are independent, then
\[P(X=x,Y=y)=P(X=x)\cdot P(Y=y)\ \ \forall x,y\]Claim 2 : The following holds regardless if $X$ and $Y$ are independent or not
\[\sum_{y\in\Omega}P(X=x,Y=y)=P(X=x)\]Proof of Claim 2 :
Let $\mathcal{X}=\text{supp}(P_X),\mathcal{Y}=\text{supp}(P_Y)$.
Using the above claims we can proceed with the final proof as follows,
\[\begin{aligned} H(X,Y)&\triangleq-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}P_{XY}(x,y)\cdot\log_2{P_{XY}(x,y)}\\ &=-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}P_{XY}(x,y)\cdot\{\log_2{P_X(x)}+\log_2{P_Y(y)}\}\\ &=-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}P_{XY}(x,y)\cdot\log_2{P_X(x)}-\sum_{x\in\mathcal{X}}\sum_{y\in\mathcal{Y}}P_{XY}(x,y)\cdot\log_2(P_Y(y))\\ &=-\sum_{x\in\mathcal{X}}\log_2{P_X(x)}\cdot\sum_{y\in\mathcal{Y}}P_{XY}(x,y)-\sum_{x\in\mathcal{Y}}\log_2{P_Y(y)}\cdot\sum_{x\in\mathcal{X}}P_{XY}(x,y)\\ &=-\sum_{x\in\mathcal{X}}P_X(x)\cdot\log_2{P_X(x)}-\sum_{y\in\mathcal{Y}}P_Y(y)\cdot\log_2{P_Y(y)}\\ &=H(X)+H(Y) \end{aligned}\]Probability Distribution : $\boxed{P_X(x)\ \ \forall x\in X\ \text{and}\sum_{x\in X}P_X(x)=1}$
Conditional Probability : Given $P_Y(y)\neq 0$, $\boxed{P_{X | Y}(x | y)\triangleq\frac{P_{XY}(x,y)}{P_Y(y)}}$ |
Conditional Probability Distribution : Define $Q$ as, $\boxed{Q(x)=P(x | y)}$. This is a probability distribution over $X$ as, |
Here, $Q$ is called conditional probability distribution.
Let $\mathcal{X}=\text{supp}(P_X),\mathcal{Y}=\text{supp}(P_Y)$.
$H(X | Y)\triangleq\sum_\limits{y\in\mathcal{Y}}P(y)\cdot H(X | Y=y)$ |
$H(X | Y=y)\triangleq-\sum_\limits{x\in\mathcal{X}}P_{X | Y}(x | y)\cdot\log_2{P_{X | Y}(x | y)}$ |