EC5.102 - Information and Communication | IC Lecture 5

with Prof. Prasad Krishnan
Jun 02, 2021 - Wednesday
Written by: Agrim Rawat

Continuing from Lecture 4,

Using (1) and (2)

\[\begin{aligned} H(X|Y)&=\sum_{y\in\mathcal{Y}}P(y)\cdot H(X|Y=y)\\ &=-\sum_{y\in\mathcal{Y}}P(y)\cdot\sum_{x\in\mathcal{X}}P(x|y)\cdot\log_2{P(x|y)}\\ &=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P(y)\cdot P(x|y)\cdot\log_2{P(x|y)}\\ &=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}\left(P(y)\cdot\frac{P(x,y)}{P(y)}\right)\cdot\log_2{\frac{P(x,y)}{P(y)}}\\ \end{aligned}\] \[\implies\boxed{H(X|Y)=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P_{XY}(x,y)\cdot\log_2{\frac{P_{XY}(x,y)}{P_Y(y)}}}\]

Where $\mathcal{X}=\text{supp}(P_X),\mathcal{Y}=\text{supp}(P_Y)$.

Chain Rule

\[\boxed{H(X,Y)=H(X)+H(Y|X)=H(Y)+H(X|Y)}\]

Proof :

Before proving, we know that (refer Lecture 4) (taking domain of $X$ as $\mathfrak{X}$ and $\mathcal{X}=\text{supp}(P_X)$

\[\begin{aligned} P_Y(y)&=\sum_{x\in\mathfrak{X}}P_{XY}(x,y)\\ &=\sum_{x\in\mathcal{X}}P_{XY}(x,y)+\sum_{x\in\mathfrak{X}\texttt{\\}\mathcal{X}}P_{XY}(x,y)\\ &=\sum_{x\in\mathcal{X}}P_{XY}(x,y)+\sum_{x\in\mathfrak{X}\texttt{\\}\mathcal{X}}P_{Y|X}(y|x)P_X(x)\\ &=\sum_{x\in\mathcal{X}}P_{XY}(x,y) \end{aligned}\]

Also we know,

\[\begin{aligned} H(X|Y)&=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P_{XY}(x,y)\cdot\log_2{\frac{P_{XY}(x,y)}{P_Y(y)}}\\ &=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P_{XY}(x,y)\cdot\log_2{P_{XY}(x,y)}+\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P_{XY}(x,y)\cdot\log_2{P_Y(y)}\\ &=-\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}}P_{XY}(x,y)\cdot\log_2{P_{XY}(x,y)}+\sum_{y\in\mathcal{Y}}P_Y(y)\cdot\log_2{P_Y(y)}\\ &=H(X,Y)-H(Y) \end{aligned}\] \[\implies H(X,Y)=H(Y)+H(X|Y)\]

Hence, proved.

Some Properties of Entropy

Can we bound $H(X)$ from above and below? Domain of $P_X$ is $\mathfrak{X}$

\[\boxed{0\leq H(X)\leq\log_2|\mathfrak{X}|}\]
  1. Proof for $H(X)\geq 0$:
\[H(X)=-\sum_{x\in\text{supp}(P_X)}P(x)\cdot\log{P(x)}\]

Since $x\in\text{supp}(P_X)$, therefore $P_X(x)>0$. So, $H(X)\geq 0$.

Also, $H(X)=1$ if and only if there exists some $x_0$ such that, $P_X(x_0)=1$ and $P_X(x)=0\ \forall\ x\neq x_0$. Meaning the support of $P_X$ is a singleton set.

Some statements before we prove part 2

  1. Proof for $H(X)\leq\log_2{ X }$ :
\[H(X)=-\sum_{x\in\text{supp}(P_X)}P(x)\cdot\log{P(x)}\]

Since $x\in\text{supp}(P_X)$ so $P(x)>0$. Also $\sum_{i=1}^nP(x)=1$. Thus, using concavity of $\log$ function,

\[\begin{aligned} H(X)&=\sum_{x\in\text{supp}(P_X)}P(x)\cdot\log_2\left(\frac{1}{P(x)}\right)\\ &\leq\log_2\left(\sum_{s\in\text{supp}(P_X)}P(x)\cdot\frac{1}{P(x)}\right)\\ &=\log_2|\text{supp}(P_X)|\leq\log_2{|\mathfrak{X}|} \end{aligned}\]